Construct and Realization of Newton Interpolation Polynomial Based on Matlab7

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On partial polynomial interpolation

The Alexander-Hirschowitz theorem says that a general collection of k double points in P imposes independent conditions on homogeneous polynomials of degree d with a well known list of exceptions. We generalize this theorem to arbitrary zero-dimensional schemes contained in a general union of double points. We work in the polynomial interpolation setting. In this framework our main result says ...

متن کامل

On multivariate polynomial interpolation

We provide a map Θ 7→ ΠΘ which associates each finite set Θ of points in C with a polynomial space ΠΘ from which interpolation to arbitrary data given at the points in Θ is possible and uniquely so. Among all polynomial spaces Q from which interpolation at Θ is uniquely possible, our ΠΘ is of smallest degree. It is also Dand scale-invariant. Our map is monotone, thus providing a Newton form for...

متن کامل

Newton-Hensel Interpolation Lifting

The main result of this paper is a new version of Newton-Hensel lifting that relates to interpolation questions. It allows one to lift polynomials in Z[x] from information modulo a prime number p 6= 2 to a power pk for any k , and its originality is that it is a mixed version that not only lifts the coefficients of the polynomial but also its exponents. We show that this result corresponds exac...

متن کامل

Polynomial Interpolation

Consider a family of functions of a single variable x: Φ(x; a0, a1, . . . , an), where a0, . . . , an are the parameters. The problem of interpolation for Φ can be stated as follows: Given n + 1 real or complex pairs of numbers (xi, fi), i = 0, . . . , n, with xi 6= xk for i 6= k, determine a0, . . . , an such that Φ(xi; a0, . . . , an) = fi, i = 0, . . . , n. The above is a linear interpolatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Engineering

سال: 2011

ISSN: 1877-7058

DOI: 10.1016/j.proeng.2011.08.717